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A Study of Texture Classification Using Spectral Features

"I. Introduction

To identify objects or region of interest in an image, textural

properties are very important because of their useful information

about the structural arrangement of surfaces and their rdlationship to

the surrounding environment. Various methods of -textural feature

selection have been proposed (see e.g. [1][2] ). Also the spectral

information has been generally recognized as an effective feature on

the texture discrimination and segmentation. A busy picture has

relatively high power at high spatial frequencies as compared to a

smooth picture, while the directional biases in the picture should

give rise to the directional biases in the spectrum. And any

periodic properties should produce very high values in the power

spectrum.

Weszka et al. [3j have used this kind of feature for the

classification of various terrains. Because of the method used to

calculate the power spectrum (taking a two-dimensional Fourior Trans-

form) cannot lead to a satisfactory result for a finite sample two-

dimensional data (image), the classification is not as good as using

other methods. Recenl-y, Lim and Malik (4] have proposed an efficient

iterative algorithm for the two-dimensionaf maximum entropy power

spectrum estimation which can obtain good resolution and sufficient

accuracy for the finite sample two-dimensional data. A study of

the spectral estimation of texture image has been proved to be

successful [5] by using a minicomputer. In this report, we use this

method for the calculation of spectral features of texture image.

In section II, we will briefly discuss the two-dimensional maximum entropy
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power spectrum estimation. The method of selection of features will

be described in section III while section IV provides some experi-

mental results of the textural classification.

II. Two-Dimensional Maximum Entropy Power Spectrum Estimation

The basic concept of the maximum entropy method (MEM) of spectral

estimation is to extrapolate the autocorrelation function of a random

process by maximizing the entropy H of the corresponding probability

density function

log Px(wl, w2 ) dwldw2  (1)

where PA(w1, w2 ) is the power spectrum estimate of the random process

x(n 1 , n 2 ). The characteristics of this method are equivalent to the

* autoregressive signal medeling and the power spectrum is calculatedHi

by
P P(wit w2) (2)

where ý\(n 1 , n 2 ) is the autocorrelation whose power spectrum is

______1 and A is a set of points (n 1 , n 2 ) where the autocorrela-

tion is known.I Since the filter coefficients cannot be obtained directly by

solving the normal equation as in the one-dimensional case, Lim and

Malik developed a new iterative algorithm, using adaptive filtering

concepts. The basic idea of this algorithm is on the notion that

the given correlation point in region A is consistent and the

corresponding coefficient should be zero outside region A and proceed

this iteration repeatedly until an optimal solution is obtained.

That is, for a given autocorrelation Rx(n, n.) for (nE, n.) A,
A

determine Px(Wl, w2) such that Px(wit W2 satisfy (2) and
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Rx(n1, n2) F P(W, w) for (n1, n2) 6 Ax 1. x1' W2 )].

A simple flowchart is shown in Fig. 1. We begin with wome

initial estimate of •\(nj, n2 ), obtain the corresponding correlation
2t

function, correct the resulting correlation function for (nl,n 2 ) i A:

with the known Rx(n1, n 2 ), obtain the corresponding ?\ (n 1 , n 2 ) from

the correct correlation function, and then replace the resulting

S(n 1 , n 2 ) with zero for (nI, n2 ) • A. This completes one iteration

and the corrected \(nI, n2 ) is a new estimate of /\(n 1 , n 2 ).

In Lim and Malik's paper, the calculation of the autciorrelation

R (n1 , n 2 ) is limited to the closed analytic form especially for the

two-dimensional sinusoids. A generalization of this method and the

application to a two-dimensional real data have been discussed by

Chen and Young [5]. To show that this algorithm can fully predict

the correct spectrum, an example is to test a three-frequency case.

Given a two-dimensional sinusoid whose frequency components are:.

wil/2W wi2/211

1) 0.3750 0.1250

2) 0.4375 0.2500

3) 0o0625 0.3750

We can verify from the result shown in Fig. 2 that this algorithm

provides a very good spectral estimation and resolution fcr the

multifrequency signal.

III. Feature Selection and Classification Method

We use two features to classify the texture images. It is

generally recognized that a coarse texture will have a high value

of power spectrum near the origin while in a fine texture, the

|.1
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value will be more spread out. Thus, if one wishes to analyze

texture coarseness, a set of features that should be useful are

the averages of the power-spectrum values taken over a ring-shaped

region centered at the origin. In this report, we consider only

the first quadrant of the power spectrum, then

S• j Px((r, e) d& (3)

for various values of r., the ring radius.

For the discrete case, this can be written as (for rings

between radius rI and r 2 )a

A

r ~ ;0 Z~~ j~j(4)

Similarly, it is well xnown also that the angular distribution

of power spectrum is sensitive to the directionality of the texture

•-fl• Iin frequency w. A texture with many edges or lines in a given

direction 0 will have high values of power spectrum around the

perpendicular of @+U ; while in a nondirectional texture the

spectrum should also be nondirectional. Thus a good set of features

for analyzing the texture directionality should be the averages of i

the power-spectrum values taken over wedge-shaped regions centered

at the origin, i.e.

IP(r,9e) dr (5)

for the various values of O, the wedge slope.

For the discrete case, this is(the wedge between e1 and e2)
given by A (6)

PX(x, y)

0< <~~~ -

The features calculated by (4) and (6) are sensitive to size and

orientation respectively, but not to both. In order to obtain the

comparable feature sets, we obtain a sets of equalized features by
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taking the average over the intersection area of rings and wedges.

These equalized features are also studied in section IV.

After the calculation of features, we use the Fisher discri-

minant technique as the means for classification [6]. For a two-

class problem, a given set of features measured x, we decide it

belongs to class 1 (subset H1), if

b wt(x - m) > 0 (7)

Otherwise we decide class 2 (subset H2 ) and,

w nSw (m1 -rm 2 ) (8)

where
whr a scalar

ns number of samples

Sw ithe pooled sample scatter matrix = 'L (x-mi)(x-mi) t

mii mean = x, i=1,2

When we have more than two classes, we can use a voting scheme to

classify a given measurement x. For each pair of classes Hi, H.P

we project x on appropriate line and classify it as described above.

This gives us k(k-l)/2 different classifications, where k is the

number of classes of x. Finally, we assign x to the class that

received the most votes.

IV. Experimental Results

Because of the computational requirements of the method and

the limited memory capacity of the PDP 11/45, all test samples are

stored in our DEC 20 system and sent through a high speed communica-

tion line to the PDP 11/45 for the spectrum computation. The test

samples are the texture images taken from the USC data base. To



verify the sensitivity both in coarseness and directionality, we

select some textures that contain such informations. The test

samples contain six classes of texture (each one has four samples)

and are shown in Fig. 3. Each data is a 32x32 array of gray level

0 - 255. These pictures reappear but are two times larger in

Fig. 4(a) - Fig. 9(a). Fig. 4(b) - Fig. 9(b) are the corresponding

estimated~power-spectrum display of the upper left data in each

class. We can see that those spectra are different either in

radial or angular distribution.
The feature sets we used are,

ring. 9rr for (r 1, r 2 )= (1,3), (3,6), (6,12), (12,24), (24,48)

wedge , for (el, 82)=(o,15), (15,30), (30,45), (45,60),1

(60,75), (75,9o)

The maximum ring radius used is 48 since it already covers most

part of a 64x64 array power spectrum.

A combination feature of ring and wedge has been tested for

30 pairs of feature values. Table I shows part of features which

did higher than 19 out of 24 correct, i.e. more than 80% correct.

Table II shows the best performing pairs using the same kind of

features (ring and ring, wedge and wedge), *there are 6 out of 25

pairs which classified correctly higher than 75%. Other pairs'

results are concentrated near 12-17, i.e., more than 50% correct

recognition. For the pairs that contain the wedge near the edges,

the results are very good since the test samples give some

directional information. Also for the rings a little farther from

the origin, the results are better since it shows a large difference

in the spectrum value there.
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Equalized features are also tested, we used five rings inter-

sected with three wedges ( ring,(1,3),(3,6),(6,12),(12,24),(24,48)

and wedge,(O,30),(30,60),(60,90)). 105 pairs of features have been

tested. Table III shows the best performing pairs of which the

best score, 23 out of 24, is 95% correct. From the results, we can

see that the ring feature (24,48) gives very useful classification

information indicating that there exists a large textural variation

in that region as the texture coarseness plays an important role in

the pair. Fig. 10 is a histogram of scores obtained of all the 105

pairs of test features and indicates a high probability for the

overall classification accuracy of the spectral features.

V. Discussion

In this report, we have observed that equalized features did

better than unequalized ones for this set of test &amples. It

is verified that both the coarseness and the directionality are

important factors in texture discrimination. For the consideration

of practical use in automatic classification, various kinds of

textures must be tested and coapared with other methods using the

non-spectral features. Another important factor which may influence

the results is that if we increase the autocorrelation function and

the discrete Fourier transform length while estimating the power

spectrum, the accuracy and the resolution will be better. But

there is a tradeoff between the accuracy and the computational

time. In this report, theso parameters (i.e. autocorrelation

function, 7x7, discrete Fourier transform length,32) are chosen

e
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for the real-time processing purpose. Also the locations of the

main and second components of frequencies can serve as another

important features because they vary among different textures.
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Fig. 2(a) The contour map uithe Fig. 2(b) Three-dimensional
estimated power spectruim (4 dI35) display of the estimated power
Nlote i A dB is the (dB value spectrum.
difference between each contour.



Fig 3The original testexu
saples with 6 classes, 2J4 data,

and each data formatof232

Fig. 4+(a) Test samples of' Fg. 4(b) The estimated powe
clssI.eotrum(f'or the upper left

Fig. 5(a) Test samples of
class 2.

Fig. 5(b) The estimated power
spectrum(for the upper left
one of (a)).



Fig. 6(a.) Test samples of~
class3*. .

v~ig. 6(b) The estimated pow'er
s3pectrum(for the upper lef~t one
of' (a)).

-kl

class 4.

Fi.g. 7() The estimated power
spectrum(for the upper left one
of (a)).
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Fig.8(a)Teý; samles

of class15

Fig. 9(a Tes samples

of class 6.-. ...

Fig. 9(b) The estimated
* j power spectrum for the

upper left one of' (a).
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Features Number correctly classified

Ring Wedge

(24,48) (o,15) 22

(1,3) (0,15) 21

(3,6) (0,15) 20

(1,3) (45,60) 19

(12,24) (0,15) 19

(3,6) (30,45) 19

(3,6) (75,90) 19

Table Is Best performing pairs using the combination feature
of ring and wedge for those with more than 80% correct
classification.

Features Number correctly classified

Ring Ring

(6,12) (24,48) 20

(6,12) (12,24) 19

Wedge Wedge

(30,45) (75,90) 20

(15,30) (60,75) 18

(30M4) (60,75) 18

(45,60) (60,75) 18

Table II: Best performing pairs using same kind of features,
for those with more than 75% correct classification.

-I
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Number correctly
Features classified

Ring Wedge Ring Wedge

(3,6) (0,30) (24,48) (0,30) 23

(12,24) (60,90) (2V,48) (0,30) 23

(24,48) (0,30) (24,48) (30,60) 22

(1,3) (0,30) (24,48) (0,30) 22
(1,3) (30,6o) (24,48) (0,30) 22

(1,3) (60,90) (24,48) (0,30) 22

(3,6) (30,60) (24,48) (0,30) 21

(3j6) (60,90) (24,48) (0,30) 21

(6,12) (0,30) (24,48) (0,30) 21

(12,24) (30,60) (24,48) (0,30) 21

(12,24) (0,30) (12,24) (60,90) 20

(1,3) (30,60) (6,12) (0,3O) 20
(1,3) (60,90) (6,12) (0,30) 20

(12,24) (0,30) (24,48) (0,30) 20

(1,3) (0,30) (6,12) (0,30) 19

(3,6) (0,30) (6,12) (0,30) 19
(3,6) (30,60) (6,12) (0,30) 19

(6,12) (0,30) (12,24) (60,90) 19

Table III Best performing pairs using equalized features
for those with more than 80% correct classification.

11

. 3
L ... I J I ; - I -) - - • -, , - - - .

f 7

Number of correctly
classified samples

Fig. 10 Histogram of scores obtained using pairs
of equalized features
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